Product Code Database
Example Keywords: tetris -leather $79-165
   » Wiki: Johnson Bound
Tag Wiki 'Johnson Bound'.
Tag

Johnson bound

Rank: 100%
Bluestar Bluestar Bluestar Bluestar Blackstar
In applied mathematics, the Johnson bound (named after Selmer Martin Johnson) is a limit on the size of error-correcting codes, as used in for data transmission or communications.


Definition
Let C be a q-ary of length n, i.e. a subset of \mathbb{F}_q^n. Let d be the minimum distance of C, i.e.

d = \min_{x,y \in C, x \neq y} d(x,y),

where d(x,y) is the between x and y.

Let C_q(n,d) be the set of all q-ary codes with length n and minimum distance d and let C_q(n,d,w) denote the set of codes in C_q(n,d) such that every element has exactly w nonzero entries.

Denote by |C| the number of elements in C. Then, we define A_q(n,d) to be the largest size of a code with length n and minimum distance d:

A_q(n,d) = \max_{C \in C_q(n,d)} |C|.

Similarly, we define A_q(n,d,w) to be the largest size of a code in C_q(n,d,w):

A_q(n,d,w) = \max_{C \in C_q(n,d,w)} |C|.

Theorem 1 (Johnson bound for A_q(n,d)):

If d=2t+1,

A_q(n,d) \leq \frac{q^n}{\sum_{i=0}^t {n \choose i} (q-1)^i + \frac

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time